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An accurate and fast approach for numerically solving a non-Markovian
Langevin equation with a thermal band-passing noise is proposed. The algorithm
combines the closed integration for both damping and noise terms with the
Runge–Kutta method for nonlinear force in the Markovian Langevin equation
transferred from the original equation. The present algorithm is tested through
simulating diffusion of a free particle by using different initial distributions, and
then a strong superdiffusion is shown. The mean velocity of a particle in a
flashing ratchet driven by the band-passing colored noise is calculated numeri-
cally. The dependence of the resulting mean velocity on temperature, asymmetry
of the ratchet potential, and inertia of the particle is discussed, and some novel
behaviors in comparison with the usual model are observed.

KEY WORDS: Band-passing noise; non-Markovian Langevin equation; strong
superdiffusion; flashing ratchet.

1. INTRODUCTION

In recent years, growing attention has been focused on the processes that
take place in disordered media and systems that show anomalous diffusive
behaviors. (1) The dynamical origin of the anomalous diffusion is due to the
nonlocality in time and thus the velocity of the particle has a memory
effect, resulting in a non-Markovian Langevin equation (NMLE). (2–4)

Morgado et al. (5) modified the noise density of states of the thermal bath



by removing the lower part of the acoustic modes; thus a deep super-
diffusion is observed. Superdiffusion has been found in a number of
systems, (6) ranging from early discoveries in intermittent chaotic systems to
fluid particles in fully developed turbulence and to millennial climate
changes. Nevertheless, a practical example of noise-induced superdiffusion
is lacking.

In ref. 7, we presented an external broadband colored noise deter-
mined by the difference between two Ornstein–Uhlenbeck noises with dif-
ferent time constants and used it as a nonequilibrium fluctuation source to
drive a correlation ratchet. (8) The results have shown that the flux direction
of the particle induced by the ‘‘green’’ noise (9) is opposite to the one
induced by the usual ‘‘red’’ noise. In this paper, we study the characteristic
behaviors of the band-passing noise used as a thermal or inertial noise,
namely, the noise and the damping kernel obey the fluctuation-dissipation
theorem. An accurate and fast algorithm is developed for simulating the
NMLE with the band-passing noise. The proposed thermal band-passing
noise is applied to a flashing ratchet and the mean velocity of the particle is
calculated numerically.

2. MODEL AND ALGORITHM

2.1. Thermal Band-Passing Noise

The NMLE for the coordinate of a particle in a potential U reads

mẍ(t)+m F
t

0
b(t − tŒ) ẋ(tŒ) dtŒ+UŒ(x)=e(t), (1)

where b(t) is the friction memory kernel and e(t) is a thermal colored noise
that we assume to be zero centered, stationary and obeying the fluctuation-
dissipation theorem: Oe(t) e(tŒ)P=kBTb(|t − tŒ|), where kB is the Boltzmann
constant and T is the absolute temperature of the environment.

As a practical and realizable case of noise-induced superdiffusion, we
report on the thermal band-passing colored noise e(t) appearing in Eq. (1),
which allows a transition between low-passing ‘‘red’’ noise and high-
passing ‘‘green’’ noise. (9) It associates with a memory kernel as

b(t − tŒ)=
b0y2

1

(y2
1 − y2

2)
5 1

y2
exp 1 −

|t − tŒ|
y2

2−
1
y1

exp 1 −
|t − tŒ|

y1

26 , (2)
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where b0 is the friction coefficient and y1 and y2 are two time parameters of
the noise. The spectral density of the band-passing noise is given by

S(w)=
2b0kBTy2

1w2

(1+y2
1w2)(1+y2

2w2)
. (3)

This spectrum shows a broad band and has high frequencies richer than
that of the harmonic noise. When y1 Q ., S=2b0kBT(1+y2

2w2)−1 is the
‘‘red’’ spectrum, and when y2 Q 0, S=2b0kBT(y1w)2/(1+y2

1w2) has the
behavior of the ‘‘green’’ spectrum, which is a constant spectrum of the white
noise plus a low-passing spectrum of the ‘‘red’’ noise.

2.2. The Algorithm

If one uses a direct numerical integration (10) to solve the NMLE (1),
a double-integration for memory velocity needs to be performed, i.e.,

F
t+Dt

t
dtŒ F

tŒ

0
b(t − s) v(s) ds= C

n − 1

k=0
b([n − k] Dt) v(k Dt)(Dt)2, (4)

and the integration for random force Cn=> (n+1) Dt
n Dt e(s) ds needs to be

simulated, where Dt is the time step. The variance OC2
nP can be evaluated

easily from the correlation function of the noise (2). However, the above
simulation for the noise should not give the characteristic behaviors of
colored noise such as relaxation and selection of frequency. Therefore, one
must first use a white noise to produce the colored noise needed. The
remaining task is to make the Euler method for nonlinear force valid to
order Dt. It is noted that this algorithm requires a long run time and thus
should not be recommended.

The present noise defined by the correlation function (2) and the spec-
trum (3) can proceed from the difference between two Ornstein–Uhlenbeck
noises driven by the same white noise g(t);

e(t)=e2(t) − e1(t),

ėi(t)= −
1
yi

ei(t)+
1
yi

g(t), (i=1, 2),

Og(t)P=0, Og(t) g(tŒ)P=2Dd(t − tŒ),

(5)

where D=b0kBT[y1/(y1 − y2)]2. The solution of ei reads

ei(t)=ei(0) exp(−t/yi)+
1
yi

F
t

0
exp[ − (t − s)/yi] g(s) ds. (6)
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The correlation function of the noise is given by

Oe(t) e(tŒ)P= C
2

i=1

5Oe2
i (0)P−

D
yi

6 exp 1 −
t+tŒ

yi

2

+5Oe1(0) e2(0)P−
2D

y1+y2

6

×5exp 1 −
t
y1

−
tŒ
y2

2+exp 1 −
t
y2

−
tŒ
y1

26+kBTb(|t − tŒ|). (7)

In order to yield stationary correlation of the noise, i.e., Oe(t) e(tŒ)P depends
only on |t − tŒ| and is independent of times t and tŒ, we let the former
threetermsinther.h.s.ofEq. (7)vanish, leadingtoOei(0) ej(0)P=2D/(yi+yj)
(i, j=1, 2). Thus, the Gaussian distributions for initial values e1(0) and
e2(0) are obtained and simulated as

e1(0)=
y1

y1 − y2

=b0kBT
y1

w10,

e2(0)=
y1

y1 − y2

=b0kBT
y2

52 `y1y2

y1+y2

w10+
y1 − y2

y1+y2
w20

6 ,

(8)

where w10 and w20 are two independent normal Gaussian random numbers
with zero-mean and variance one.

Now we transfer Eq. (1) into a set of MLE by introducing two
variables

y1(t)=A F
t

0

1
y1

exp 1 −
t − s
y1

2 ẋ(s) ds − e1(t),

y2(t)= − A F
t

0

1
y2

exp 1 −
t − s
y2

2 ẋ(s) ds+e2(t),

(9)

where A=b0y2
1/(y2

1 − y2
2). Thus, a MLE with four variables is written as

ẋ=v(t),

mv̇=f(x)+y1(t)+y2(t),

ẏ1= −
1
y1

y1(t)+
A
y1

v(t) −
1
y1

g(t),

ẏ2= −
1
y2

y2(t) −
A
y2

v(t)+
1
y2

g(t),

(10)

where f(x)=−UŒ(x).
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A comprehensive approach is proposed here by using a closed
integration (11, 12) for both damping and noise terms, combined with the
Runge–Kutta method (13) for nonlinear force. The present algorithm is
precessed by

x(t+Dt)=x(t)+
Dt
2

[v(t)+vg(t)], (11)

v(t+Dt)=v(t)+
1
m
3F

t+Dt

t
f(x(s)) ds+ C

2

i=1
F

t+Dt

t
yi(s) ds4 , (12)

yi(t+Dt)=exp 1 −
Dt
yi

2 yi(t)+
(−1) i

yi
F

t+Dt

t
exp 1 −

t+Dt − s
yi

2

· [ − Av(s)+g(s)] ds (i=1, 2). (13)

If the potential force is approximately a linear function, > t+Dt
t f(x(s)) ds=

f(x(t)) Dt;otherwise,> t+Dt
t f(x(s)) ds=[f(x(t))+f(xg(t))] Dt/2 ingeneral.

Here the quantities taking ‘‘* ’’ used in multi-step simulation are calculated
by the Euler algorithm of Eqs. (10). Four Gaussian random numbers will
be needed in each step for the comprehensive algorithm. Namely, the inte-
grations of noise can be simulated by linear combinations of four normal
Gaussian random numbers, and matrix elements of the coefficients are
evaluated by self- and cross-correlations of the integrations of noise in
Eqs. (12) and (13). (14, 15) Nevertheless, if the noise is not in the region of
white noise limit and the damping is not too large, all equations in (10) can
be simulated well by using the second-order Runge–Kutta method, which
needs only one Gaussian random number in each step.

3. RESULTS AND DISCUSSION

We can solve exactly the NMLE (1) when U=0 by using the Laplace
transform technique. The asymptotical expression of the mean-square
displacement of the particle is obtained as

lim
t Q .

O[Dx(t)]2P=kBT 32
(y1+y2) o2

(1+o)3 t+
o

(1+o)2 t2 −
o2(y1+y2)2

(1+o)4
4 , (14)

where o=b0y2
1/(y1+y2). This is called the ballistic diffusion, a strong

superdiffusion. It is found that limt Q .O[Dx(t)]2P=2kBT/(mb0) t for
y1 Q . and y2=0. If y2 Q 0 only, the noise becomes a ‘‘green’’ noise,
limt Q .O[Dx(t)]2PQ 2kBT(mg0) y1/(1+g0y1)2 t2, and the coefficient of t2

arrives at a maximum if y1=1/b0. Notice that the present noise differs
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from the harmonic noise; (16) the latter is a narrow-band noise and is also
called a quasi-colored noise, and its high-frequency part of the spectrum is
declining. Moreover, the fractal noise proposed by Jung, (17) in particular, is
an overdamped harmonic noise. Thus, they cannot induce a superdiffusion.

The dimensionless units, kB=1.0, m=1.0, the time step Dt=10−3,
and the trajectory number N=104 are used in the calculations. In Fig. 1,
we plot numerical results of the mean-square displacement of a free particle
O[Dx(t)]2P. The error of the present algorithm related to theoretical data is
less than one per cent. It is seen that O[Dx(t)]2P is proportional to t2 in the
long-time limit when the noise is in the region of ‘‘green’’ noise.

Dependence of the mean-square displacement of the particle on the
initial distribution of the broadband noise is shown in Fig. 2. It is seen that
the numerical data diverges from the theoretical result if the temperature of
the initial distribution is not chosen to be equal to the system temperature.
This implies that velocity memory leads to a transition error being added
and developed. Indeed, if the initial temperature T0=0, the development of
fluctuation will be very weak in the system.

Now we apply the proposed noise and algorithm to a periodically flash-
ing ratchet. The potential is chosen to be a periodic sawtooth function as

U(x)=
U0

(1 − a) L
x, 0 < x < (1 − a) L,

=
U0

aL
(L − x), (1 − a) L < x < L, (15)
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Fig. 1. The mean-square displacement of a free particle vs time for various y1 and y2 at the
temperature T=1.0. The solid lines and open circles are numerical and theoretical results,
respectively.
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Fig. 2. Dependence of the mean-square displacement of a free particle on the initial tem-
perature T0. The parameters used are T=1.0, y1=0.2, and y2=0.02. The solid lines and open
circles are numerical and theoretical results, respectively.

where U0, a, and L are the barrier height, asymmetrical parameter, and
periodic length of the ratchet potential, respectively. The potential U(x) is
instead of z(t) U(x) in Eq. (10), (18 −20) and z(t) is a periodic process taking
two values: z(t)=1 for jtp < t < (j+1) tp; z(t)=0 for (j+1) tp < t <
(j+2) tp, where tp is the half-cycle period of the particle expressing the
potential on and off.

Due to a strong velocity-memory effect in the presence of the thermal
band-passing noise, the system requires a long time for arriving at the sta-
tionary state. We use two different ways to evaluate the mean velocity in
the stationary state. If the mean velocity of the particle is large, it is
determined numerically by OvP= 1

tf − ts
> tf

ts
Ov(tŒ)P dtŒ, where ts is the time of

the system arriving at the stationary state and tf is final time of the simu-
lations. If the mean velocity is small, for instance, smaller than 10−2, it is
evaluated by OvP=;N

n=1 [xn(tf) − x(0)]/Ntf, N being the simulated
trajectory number.

In Fig. 3, we show the mean velocity of the particle as a function of
the half-cycle period tp and compare it with the result of a white noise
(y1 Q . and y2 Q 0) at the same parameters a=0.8, b0=1.0, and T=0.01.
The mechanism of directed motion can be understood well from the
following facts. When the potential is off, the particle diffuses freely and
symmetrically, and the particle crossing the position of the nearest barrier
is larger than that of the farthest barrier. However, when the potential is
recovered, the particle moves along two sawtooth sides of the ratchet
potential, and it is easy for the particle to descend to the bottom of a well
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along the steeper side of the potential. The magnitude and direction of the
mean velocity of the particle will be determined by the competition between
the above two processes. It is seen from Fig. 3 that, in the presence of
thermal band-passing noise, the mean-velocity curve as a function of tp has
two peaks. The first peak corresponds to a maximum of the difference
between forward and backward probabilities during a short cycle period,
and the second peak is due to the particle having enough time to descend
to the bottom of a well along two sawtooth sides of the ratchet potential,
thus the particle can move neatly a long distance. Moreover, it is observed
that the maximum of the mean velocity in the presence of thermal band-
passing noise is much larger than that of the usual flashing ratchet at the
same parameters.

The dependence of the mean velocity on the asymmetry of the ratchet
potential is shown in Fig. 4. It is seen that, with decreasing asymmetry a of
the ratchet potential, the first peaks of the mean velocity drift toward large
tp and their highs decrease. For a fast flashing-ratchet system, when the
potential is off, the particle crosses the position of the nearest barrier more
easily than the farthest barrier, and this possibly decreases with decreasing
asymmetry of the ratchet; the difference between the right and left proba-
bilities is also a decreasing function of a; thus the peak of the mean-velocity
curve decreases. Moreover, the second peak of the mean-velocity curve
does not appear for small a, because there does not exist an optimal tp to
make the probability drift Pf − Pb become maximum when the flashing
frequency of the ratchet is slow.
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Fig. 3. The mean velocity as a function of the half period tp at fixed asymmetrical parameter
a=0.8 and temperature T=0.01. The solid and dashed lines are the results of broadband
noise (y1=0.5 and y2=0.05) and white noise, respectively.
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Fig. 4. The mean velocity as a function of tp for several asymmetries a of the ratchet poten-
tial at a fixed temperature T=0.001.

A plot of the mean velocity as a function of tp for several values of T
is shown in Fig. 5. As an interesting point, we note that the maximum of
OvP increases with decreasing temperature and the curves of mean velocity
for different values of T converge to a single peak; this behavior has been
observed in the normal overdamped flashing ratchet; (20) however, as
Astumian and Bier (19) have argued, no flows exist at T=0.

The inertia effect is observed in Fig. 6. A finite inertia causes a
complex mean-velocity behavior. A global maximum appears for finite
mass, and hence finite inertia may enhance the value of the mean velocity,
since the diffusion and mobility have a weaker effect on a larger mass.
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Fig. 5. The mean velocity as a function of tp for different temperatures at a fixed a=0.8.
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Fig. 6. The mean velocity as a function of tp for several inertial masses m at fixed T=0.001
and a=0.9.

4. SUMMARY

An accurate and fast comprehensive algorithm for numerically
simulating a non-Markovian Langevin equation with a thermal band-
passing noise is proposed; it is based on the closed integral approach for
both damping and noise terms and the second-order Runge–Kutta method
for nonlinear force. The correct initial distribution of the noise is presented
and tested. Non-equilibrium transport in a flashing-ratchet potential subject
to the thermal band-passing noise is considered. The results show that there
are two peaks for the mean velocity as a function of the half-cycle period
for a large asymmetrical ratchet. Moreover, the maximum of the mean
velocity in the superdiffusive flashing ratchet is much larger than that in the
usual flashing ratchet. Finite inertia can enhance the mean velocity and the
directed flux reversals in the underdamped case. These phenomena can
be understood well from diffusion and mobility of the particle in the poten-
tial on and off during a cycle period. It is believed that the present
band-passing colored noise and numerical algorithm for simulating non-
Markovian Langevin equations should have numerous applications.
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